
Improving XLSXForms

Document Summary

tldr; This documents the process of improving XForms for better mapper efficiency and stability.

Read time; 15mins

Technical Depth: Medium

- - - - 

Background

XLSXForms are used by OpenDataKit (ODK) to define the input fields for multiple mobile 

data collection apps. They have a rather complex syntax, since the XLSXForms are edited as a 

spreadsheet. Most of the XLSXForms I’ve collected don’t utilize more than the basic 

functionality of this format. While there are a few web based front ends for creating and editing 

XLSXForms, they don’t support many of the more advanced functionality of XLSXForms. The 

current only way to access this functionality is to use a spreadsheet program. To use the 

XLSXForm with a mobile app it gets converted using a utility program, xls2xform, to the XML 

based XForm used by the apps.

There are two primary mobile apps used at HOT, OpenMapKit (OMK), and OpenDataKit 

(ODK). OMK uses the same XLSX format as ODK, so any comments apply to both. 

KoboToolKit also supports XLSXForms. This document explains how to improve XLSXForms 

for more efficient data collection. Efficiency lets you collect more good data in less time.

OpenDataKit

 OpenDataKit (ODK) is both a mobile app (ODK Collect) for Android, and a server (ODK 

Central). Most of the functionality of the OMK app has been migrated to ODK Collect, although it

works differently. This document also explains how to modify old XForms from the OMK app to 

ODK Collect. ODK Collect is actively maintained, and the organization behind it offers various 

support services.

https://xlsform.org/en/
https://docs.getodk.org/central-intro/
https://docs.getodk.org/central-intro/
https://docs.getodk.org/collect-intro/
https://www.opendatakit.org/
https://www.kobotoolbox.org/
https://getodk.org/
http://www.openmapkit.org/
https://www.opendatakit.org/


OpenMapKit

OpenMapKit (OMK) is a Red Cross sponsored project for collecting data. It comprises both a

server and a mobile app. OMK is an android based mobile application, referred to onward as 

OMK. Use of OMK is being deprecated, as it has been unmaintained for several years, and its 

functionality has been added to ODK. OMK used special field called osm in the survey sheet 

(first page of the XLSX file), it then looks at an additional sheet called osm that replaces the 

existing choices sheet. The values in the osm sheet are designed to be more closely matched 

to the tagging scheme used by OpenStreetMap (OSM). 

XLSXForm Syntax

An XLSXForm is the source file for OMK and ODK based tools. This is edited in a 

spreadsheet program like LIbreCalc or Excel. There are also online build tools, but they fail to 

utilize the full functionality of XLSXForms. The python program xls2xform converts the 

spreadsheet to the format used by ODK Collect. You can also upload the spreadsheet to the 

ODK Central server, and it will convert it.

Sheet Names

 The sheet names are predefined to have specific functionality as follows, and the column 

headers are used to determine the functionality of the value in the cells of the spreadsheet. The 

sheets are Survey, Choices, and Settings. A few columns are required to exist in each sheet, 

the rest are optional.

● Survey  

○ This sheet contains all the questions used for collecting data, and refers to the 

actual values for each question which are on the choices sheet. 

These are the mandatory column headers in the survey sheet:

● Type - The type of question, the most common ones are text, select_one, and 

select_multiple. The second argument in the type column is the keyword used 

as the list_name in the choices sheet for selection menus

https://xlsform.org/en/#the-survey-worksheet
https://xlsform.org/en/
https://www.openstreetmap.org/
https://www.openmapkit.org/


● Name - Refers to the name of the choice keyword that would be the tag in the 

output OSM file

● Label - Refers to the question the user sees

The name and label column headers also support different languages by using a postfix

of ::[language](abbreviation) appended to it, for example label::Nepali(np).

These are the optional column headers in the survey sheet:

● Hint   - Optional value display with the question with further information

○ The  hint column also supports different languages by using a postfix of ::
[language](abbreviation) appended to it, for example hint::Nepali(np).

● Default   - Optional default value for a selection.

● Required   - If the value is 1 or yes, this field must have an answer. If the value is 0

or no or blank, then it’s optional.

● Relevant   - Allows to set up conditional display of questions based on other fields.

● Appearance   - This changes how input fields are displayed on the screen. 

● Choices  

The choices sheet is used to define the values used for the select_one and 

select_multiple questions on the survey sheet.

 The mandatory column headers are:

○ List_name - This is the name of the list as specified in the select type in the 

survey sheet.

○ Name - This becomes the value for the tag in the OSM output file.

○ Label - Refers to what is displayed in the select menu.

■ The label column header also supports different languages by using a 

postfix of ::[language](abbreviation) appended to it, for example 

label::Nepali(np).
● Settings  

○ This is a simple sheet that contains the version of the sheet, and the title of the 

input form. The version is used by the server and the mobile apps to track 

changes in the data format, so it should always be updated after changes are 

made.

https://xlsform.org/en/#the-choices-worksheet
https://xlsform.org/en/#appearance
https://xlsform.org/en/#relevant
https://xlsform.org/en/#required
https://xlsform.org/en/#default
https://xlsform.org/en/#hints


Input Types

The Survey sheet has several forms of selecting answers. These allow the mapper to enter a
number, text, or select one or multiple items from a menu.

Mapping Answers to OSM

When designing an XForm whose data is for OSM, the two key columns that determine the 

tag & value scheme used in the OSM XML format are name in the survey sheet, which 

becomes the tag, and name in the choices sheet, which becomes the value. 

Screen Layout

ODK supports multiple options to change the layout of the input fields on the screen. In the 

XLSXForm, this is under the appearance column. There’s many possible options available to 

change the layout, but here’s a summary of the primary ones.

○ Minimal - Answer choices appear in a pull-down menu.

○ Field-list - Entire group of questions appear on one screen

○ Parameter-map - Use a basemap to pick the location

○ Quick - Auto-advances the form to the next question after an answer is selected

For example, the below screenshot shows the result of the minimal attribute set in the 

appearance column.

https://docs.getodk.org/form-question-types/


Which then looks like this when the XForm is opened.



● All fields are grouped together to maximize 

screen space. 

● When the field-list attribute is set for 

begin_group, then multiple questions are on the 

same screen. 

● The screen can be scrolled if there are more

input fields than fit.

Conditionals
ODK can optionally display input fields for 

questions based on a selection. Using conditionals 

allows for a more guided user interface, than just 

presenting many questions, some of which aren’t 

relevant to the current mapping task.

Using Conditionals: 

● Conditionals go in the relevant column on the survey sheet.

● A conditional has two parts, the variable from the name column of a question, and the 

value to test against, which is one of the select values.

In the XLSXForm, the spreadsheet should look like this. The amenity menu is only displayed 

if the answer to the “what type of building is this” is “commercial”. 



type name label relevant

select_one amenity amenity Type of Amenity ${building}=’commercial’

Using conditionals allows for a more dynamic interface, as only relevant questions are 

displayed. Some questions may have answers that only require a few more questions before 

being complete. Other answers may generate more questions, for example a commercial 

building instead of a residence.

Grouping

ODK supports grouping survey questions together, which when used with conditionals in the 

relevant column, and attributes from the appearance column, creates a more dynamic user 

interface. Groups allow more than one question on the screen, which is more efficient than one 

question per screen, which is the default.

Using Grouping

● Groups are defined in the survey sheet. 

● Using the appearance column can display multiple questions on each screen, 

minimizing the actions required to enter data. 

Sub groups are also supported. When implemented this way, when the top level group is 

displayed on the screen, other questions can be dynamically added to the screen display based 

on what is selected, further minimizing required actions. Using the appearance column settings 

with grouping can create a more efficient user experience. Ungrouped questions appear one on 

each screen of the mobile data collection app, requiring one to swipe to the next page for each 

question.

● Begin_group

○ Can use the relevant column to conditionally display the entire group of 

questions

● End_group

○ End the group of survey questions



An example grouping would look like this, and the conditional says to only display this group for 

commercial buildings.

type name label relevant

select_one building What type of building ?

begin_group amenity ${building}=’commercial’

select_one amenity amenity Type of Amenity

text name What is the name ?

End_group

In this example, the conditional is applied to the entire group of questions, and not just any 

individual question. Different questions in the group may have different conditionals. 

External Datasets

XLSForms support external datasets, which is useful for common choices that can be shared
between multiple XLSForms. CSV, XML, or GeoJson files are supported. The one downside is 
currently external datasets of choices do not support translations, one language only. Each CSV
file needs a header that defines at least the name and label columns. The name becomes the 
tag in OSM, and the label is what ODK Collect displays in the select menu. An id column is also 
required. Anything else becomes a column in the XLSForm.

An example CSV data file would look like this:

label name backcountry Id ref tourism openfire

Test 1 Site 1 yes 5483233147 1 camp_site yes

Test 2 Site 35 no 6764555904 35 camp_site yes

For example, these rows in the survey sheet will load the data from the CSV file. The 
instance is the name of the data file, minus the suffix. The item is what the XForm has in the 
name column for the select_one_from_file. Then the last part is the column from the OSM data. 
Whenever the value of test is changed, the trigger goes off, and the value is recalculated and 



becomes the default value for the survey question.

type name label calculation trigger choice_filter

select_one_from_file 
test.csv

test CSV Test true()

calculate xname Name instance('test')/
root/
item[name=$
{test}]/label

${test}

text debug Name is ${xname} ${test}

GeoJson Files 
An external file in GeoJson format works slightly differently, as it also contains GPS 

coordinates. This allows ODK Collect to display data on the map as an overlay that can be 
selected. This lets us make a data extract from OSM data and edit it. In OSM, many buildings 
are tagged building=yes, as that’s about all you can do when doing remote mapping off satellite 
imagery. ODK Collect can’t handle polygons yet, so a data extract has to use only POIs. To use 
a GeoJson file, just change the file name in this example. The only other difference is that since 
the GeoJson data file contains GPS coordinates, you can get either a map or a normal selection
menu. To get the map view, put map in the appearance column.

When using a GeoJson data file, after opening the XForm, you’ll get a button to select an 
existing POI. That’ll open either the menu, or the map. For the map view, you’ll see blue 
markers where the existing features are, Touching an icon loads that data into ODK Collect. 
You can access the values in the OSM data the same as the above example.



OpenStreetMap Data
For those of use that are OpenStreetMap mappers, we’ve often wanted to be able to edit 

data in the field. This is possible with mobile apps like StreetComplete or Vespucci, but their 
presets aren’t focused on humanitarian data collection. Since many features have been added 
by remote mapping, there are rarely any tags beyond building=yes. Until this functionality was 
added to ODK Collect, the mapper collected a new POI, and just manually merged the data 

https://vespucci.io/
https://wiki.openstreetmap.org/wiki/StreetComplete


later using an editor like JOSM. Now it’s possible to load data from OSM into ODK Collect. 
Using an XForm to improve feature data achieves tag completeness for a feature, as well as 
limits the tag values to accepted values.

To create a data extract from OSM, you need to use Overpass Turbo or Postgres. Each tag 
in OSM becomes a column in an XForm. The column names are how you reference the data 
from within the XForm. If you are using the OSM data to set the default value for a 
select_one_from_file, then every possible value used for that tag needs to be in the choices 
sheet, or you get this error, which is doctor is not in the choices for healthcare.

There’s two data conversion processes required to use OSM in ODK Collect. The first step is
producing the data extract. Since my goal is to convert the data from ODK into OSM, I use OSM
standard tags in the name column in my survey and choices sheets. When doing a query to 
Overpass or Postgres, the column



name will conflict, as it’s the same as what is in the survey sheet. So the data extract needs to 
use something else. For Postgres, this is easy as you can use AS in the query to rename the 
column to whatever you want. I’ve taken to using abbreviations or the OSM tags name. Those 
variable names are only used internally.

Converting from OMK to ODK
The OMK mobile app was used for collecting location data using the GPS on the device, or 

tapping on a basemap. Because that functionality is now in ODK, the usage of the OMK mobile 

app is not required, and is not unmaintained and may be unreliable. This section is only useful if

you find yourself with an old XForm that you want to edit and reuse, as none of it applies to 

ODK or Kobo Collect.

Step 1 - Prepare Data

The first step is to copy the contents of the osm sheet into the choices sheet, The other 

option is to delete the choices sheet, and then rename the osm sheet to choices.

Step 2 - Migrate Questions

The next step is to migrate the questions. The osm keyword in the survey sheet is followed 

by a variable name, for example in this table, building_tags is the variable. When looking at 

the choices sheet, every row using the building_tag keyword now has to become a question

on the survey sheet.

type name label required

osm building_tags osm_building Building Form yes

In the choices sheet, we see this existing data.

list_name name Label

building_tags name Name of this building

building_tags building:material What is it made from ?



building_tags building:roof Is there a building  roof ?

Cut & paste these rows from the choices sheet, and paste them into the survey sheet. Then

prefix the variable with selct_one or select_multiple. Drop the prefix used in the choices 

sheet and simplify it.

type name label

text name Name of this building

select_one building:material material What is it made from ?

select_one building:roof roof Is there a building  roof ?

Step 3 - Get Coordinates

The last step is replacing the keyword that used to start OMK, with the ODK way. There are 

three ODK keywords that can be used to get a location.

● Geopoint - Collect a single location

● Geoshape - Collect at least 3 points and the ends are closed

● Geotrace - Collect a trace of a line

By default these keywords only allow you to get the location of where the user is located. If 

you want to use a basemap and tap on the screen where you want to get the location, add 

placement-map into the appearances column.

After doing these three steps, your XLSXForm is converted to not use the OMK app 

anymore.

XLSXForm Suggestions

Since often mobile data collection is many of the same type of data, setting defaults helps 



reduce the amount of user actions that need to be performed to collect data. Often data 

collection is multiples of the same type of data, good defaults can record data where only the 

location has changed.


